জটিল সংখ্যার বর্গমূল

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ২য় পত্র | NCTB BOOK
1.1k

জটিল সংখ্যার বর্গমূল নির্ণয় করা একটু ভিন্নতর প্রক্রিয়া, কারণ এটি বাস্তব সংখ্যার মতো সরাসরি বের করা যায় না। একটি জটিল সংখ্যা \( z = a + bi \)-এর বর্গমূল নির্ণয়ের জন্য ধ্রুবক আকার (Polar Form) ব্যবহার করা হয়। নিচে এই প্রক্রিয়া সম্পর্কে বিস্তারিত আলোচনা করা হলো:


ধ্রুবক আকারে (Polar Form) বর্গমূল নির্ণয়

ধরুন, আমাদের কাছে একটি জটিল সংখ্যা \( z = a + bi \) রয়েছে। প্রথমে, এটি ধ্রুবক আকারে রূপান্তর করতে হবে:

  1. পরমমান নির্ণয় করুন:
    \[
    r = |z| = \sqrt{a^2 + b^2}
    \]
  2. নতি নির্ণয় করুন:
    \[
    \theta = \arg(z) = \tan^{-1} \left(\frac{b}{a}\right)
    \]

এখন, \( z = r (\cos \theta + i \sin \theta) \) আকারে প্রকাশিত হতে পারে।

বর্গমূলের সূত্র

জটিল সংখ্যার বর্গমূল নির্ণয়ের সূত্র হলো:
\[
\sqrt{z} = \sqrt{r} \left( \cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right)
\]
এবং অন্য একটি সম্ভাব্য বর্গমূল হবে:
\[
-\sqrt{r} \left( \cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right)
\]

এখানে দুইটি ভিন্ন বর্গমূল পাওয়া যাবে, কারণ প্রতিটি জটিল সংখ্যার দুটি বর্গমূল থাকে।


উদাহরণ

ধরুন, আমাদের কাছে একটি জটিল সংখ্যা \( z = 3 + 4i \) রয়েছে। এর বর্গমূল নির্ণয় করতে নিচের ধাপগুলো অনুসরণ করা হবে:

  1. পরমমান \( r \) নির্ণয়:
    \[
    r = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
    \]
  2. নতি \( \theta \) নির্ণয়:
    \[
    \theta = \tan^{-1} \left(\frac{4}{3}\right) \approx 0.93 \text{ রেডিয়ান}
    \]
  3. বর্গমূল নির্ণয়:
    \[
    \sqrt{z} = \sqrt{5} \left( \cos \frac{0.93}{2} + i \sin \frac{0.93}{2} \right)
    \]
    এটি আরও সরলীকরণ করলে, দুটি সম্ভাব্য বর্গমূল পাওয়া যাবে।

এই পদ্ধতি অনুসরণ করে যেকোনো জটিল সংখ্যার বর্গমূল নির্ণয় করা সম্ভব।

Promotion
NEW SATT AI এখন আপনাকে সাহায্য করতে পারে।

Are you sure to start over?

Loading...